
Approximately Equivariant Neural Processes

Matthew Ashman∗

University of Cambridge
mca39@cam.ac.uk

Cristiana Diaconu∗

University of Cambridge
cdd43@cam.ac.uk

Adrian Weller
University of Cambridge
The Alan Turing Institute

aw665@cam.ac.uk

Wessel Bruinsma
Microsoft Research AI for Science
wessel.p.bruinsma@gmail.com

Richard E. Turner
University of Cambridge

Microsoft Research AI for Science
ret23@cam.ac.uk

Abstract

Equivariant deep learning architectures exploit symmetries in learning problems to
improve the sample efficiency of neural-network-based models and their ability to
generalise. However, when modelling real-world data, learning problems are often
not exactly equivariant, but only approximately. For example, when estimating the
global temperature field from weather station observations, local topographical
features like mountains break translation equivariance. In these scenarios, it is
desirable to construct architectures that can flexibly depart from exact equivariance
in a data-driven way. In this paper, we develop a general approach to achieving
this using existing equivariant architectures. Our approach is agnostic to both the
choice of symmetry group and model architecture, making it widely applicable.
We consider the use of approximately equivariant architectures in neural processes
(NPs), a popular family of meta-learning models. We demonstrate the effectiveness
of our approach on a number of synthetic and real-world regression experiments,
demonstrating that approximately equivariant NP models can outperform both their
non-equivariant and strictly equivariant counterparts.

1 Introduction

The development of equivariant deep learning architectures has spearheaded many advancements in
machine learning, including CNNs [LeCun et al., 1989], group equivariant CNNs [Cohen and Welling,
2016a, Finzi et al., 2020], transformers [Vaswani et al., 2017], DeepSets [Zaheer et al., 2017], and
GNNs [Scarselli et al., 2008]. When appropriate, equivariances provide useful inductive biases that
can drastically improve sample complexity [Mei et al., 2021] and generalisation capabilities [Elesedy
and Zaidi, 2021, Bulusu et al., 2021] by exploiting symmetries present in the data. Yet, real-world data
are seldom strictly equivariant. As an example, consider modelling daily precipitation across space
and time. Such data may be close to translation equivariant—and therefore translation equivariance
serves as a useful inductive bias—however, it is clear that it is not strictly translation equivariant
due to geographical and seasonal variations. More generally, whilst there are aspects of modelling
problems which are universal and exhibit symmetries such as equivariance (e.g. atmospheric physics)

∗Equal contribution.

Preprint. Under review.

ar
X

iv
:2

40
6.

13
48

8v
1

 [
st

at
.M

L
]

 1
9

Ju
n

20
24

there are often unknown local factors (e.g. precise local topography) which break these symmetries
and which the models do not have access to. It is thus desirable for the model to be able to depart
from strict equivariance when necessary; that is, to develop approximately equivariant models.

A family of models that have benefited greatly from the use of equivariant deep learning architectures
are neural processes [NPs; Garnelo et al. 2018a,b]. However, many of the problem domains that NPs
are applied to exhibit only approximate equivariance. It is therefore desirable to build approximately
equivariant NPs through the use of approximately equivariant deep learning architectures. Whilst
there exist several approaches to constructing approximately equivariant architectures, they are limited
to CNN- and MLP-based models [Wang et al., 2022a, van der Ouderaa et al., 2022, Finzi et al., 2021,
Romero and Lohit, 2022]—which restricts their applicability to certain symmetry groups—and often
require modifications to the loss function used to train the models [Finzi et al., 2021, Kim et al., 2023].
As there exist NPs that utilise a variety of architectures, such as transformers and GNNs [Carr and
Wingate, 2019, Nguyen and Grover, 2022, Kim et al., 2019, Feng et al., 2022], these approaches are
not sufficient. We address this shortcoming through the development of an approach to constructing
approximately equivariant models that is both architecture and symmetry-group agnostic. Importantly,
our approach can be realised without modifying the core architecture of existing equivariant models,
enabling use in a variety of equivariant NPs such as the convolutional conditional NP [ConvCNP;
Gordon et al. 2019], the equivariant CNP [EquivCNP; Kawano et al. 2021], the steerable CNP
[SteerCNP; Holderrieth et al. 2021], the translation equivariant transformer NP [TE-TNP; Ashman
et al. 2024], and the relational CNP [RCNP; Huang et al. 2023].

We outline our core contributions as follows:

1. We demonstrate that, under certain regularity conditions, any non-equivariant mapping between
function spaces can be approximated by an equivariant mapping with additional, fixed inputs. This
provides insight into how to construct approximately equivariant models, and generalises several
existing approaches to relaxing equivariant constraints.

2. We apply this result and the insights it provides to construct approximately equivariant versions
of several popular equivariant NPs. The modifications required are very simple, yet effective:
we demonstrate improved performance relative to both strictly equivariant and non-equivariant
models on a number of spatio-temporal regression tasks.

2 Background

We consider the supervised learning setting, where X , Y denote the input and output spaces, and
(x,y) ∈ X × Y denotes an input-output pair. Let S =

⋃∞
N=0(X × Y)N be a collection of all finite

data sets, which includes the empty set ∅. Let SM = (X × Y)
M be the collection of M input-output

pairs and S≤M =
⋃M

m=1 Sm be the collection of at most M pairs. We denote a context and target
set with Dc, Dt ∈ S, where |Dc| = Nc, |Dt| = Nt. Let Xc ∈ (X)Nc , Yc ∈ (Y)Nc be the inputs
and corresponding outputs of Dc, and let Xt ∈ (X)Nt , Yt ∈ (Y)Nt be defined analogously. We
denote a single task as ξ = (Dc,Dt) = ((Xc,Yc), (Xt,Yt)). Let P(X) denote the collection of
stochastic processes on X . Let Θ denote the parameter space for some family of probability densities,
e.g. means and variances for the space of all Gaussian densities.

2.1 Neural Processes

NPs [Garnelo et al., 2018a,b] can be viewed as neural-network-based parametrisations of maps
π : D → P(X) from data sets D to predictions P(X), where predictions are represented with
stochastic processes on X [Foong et al., 2020, Bruinsma, 2022]. Throughout, we denote the density
of the finite-dimensional distribution of π(D) at inputs X by p(· | X,D). In this work, we restrict
our attention to conditional NPs [CNPs; Garnelo et al. 2018a], which only target marginal predictive
distributions by assuming that the predictive densities factorise: p(Y|X,D) =

∏
n p(yn|xn,D). We

denote all parameters of a CNP by ω. CNPs are trained in a meta-learning fashion, in which the
expected predictive log-probability is maximised:

ωML = argmaxω LML(ω) where LML(ω) = Ep(ξ)

[∑Nt

n=1 log pω(yt,n|xt,n,Dc)
]
. (1)

Here, the expectation is taken with respect to the distribution over tasks p(ξ). In practice, we only
have access to a finite number of tasks for training, so the expectation is approximated with an average

2

over tasks. The global maximum is achieved if and only if the model recovers the ground-truth
marginals [Proposition 3.26 by Bruinsma, 2022].

2.2 Group Equivariance

We consider equivariance with respect to transformations in some group G. For example, G can
be the group of translations or the group of rotations. Mathematically, a group G is a set endowed
with a binary operation G×G→ G (denoted as multiplication) such that (i) (fg)h = f(gh) for all
f, g, h ∈ G; (ii) there exists an identity element e ∈ G such that eg = ge = g for all g ∈ G; and
(iii) every element g ∈ G has an inverse g−1 ∈ G. A G-space is a space X for which there exists a
function G×X → X called a group action (again denoted by multiplication) such that (i) ex = x for
all x ∈ X; and (ii) f(gx) = (fg)x for all f, g ∈ G and x ∈ X . The notion of group equivariance is
used to describe mappings for which, when the input to the mapping is transformed by some g ∈ G,
the output of the mapping is transformed equivalently. This is formalised in the following definition.

Definition 1 (G-equivariance). LetX and Y beG-spaces. Call a mapping ρ : X → Y G-equivariant
if ρ(gx) = gρ(x) for all g ∈ G and x ∈ X .

2.3 Group-Equivariant Conditional Neural Processes

Incorporating equivariance into NPs serves as a useful inductive bias that can help generalisation and
improve parameter efficiency. Intuitively, requiring a NP to be equivariant effectively ties parameters
together, which significantly reduces the search space during optimisation, enabling better solutions
to be found with fewer data. For a CNP, assume that every marginal p(· |x,D) is in some fixed
parametric family with parameters θ = θ(x,D). For example, θ could consist of a mean and a
variance. Let C(X ,Θ) denote the set of continuous functions X → Θ. For a CNP, define the
associated parameter map Φ: S → C(X ,Θ) by Φ(D)(x) = θ(x,D). Intuitively, the parameter
map Φ maps a dataset D to a function Φ(D) giving the parameters Φ(D)(x) for every marginal x.
Assume that X is aG-space. Turn S and C(X ,Θ) intoG-spaces by applying g to the inputs: gD ∈ S
consists of the input–output pairs (gxn,xy), and gf ∈ C(X ,Θ) is defined by (gf)(x) = f(gx).

Definition 2 (G-equivariant CNP). A CNP is G-equivariant if the associated parameter map Φ is
G-equivariant: Φ(gD) = gΦ(D) for all datasets D.

To parametrise a G-equivariant CNP, we must parametrise the associated parameter map Φ. Whilst
there exist a variety of equivariant NP architectures, in this section we present a general construction
by Kawano et al. [2021].

Theorem 1 (Representation of G-equivariant CNPs, Theorem 2 by Kawano et al. [2021]). Let
Y ⊆ RD be compact. Consider an appropriate collection S ′

≤M ⊆ S≤M . Then a function Φ: S ′
≤M →

C(X ,Θ) is continuous, permutation invariant, and G-equivariant if and only if it is of the form

Φ(D) = ρ(e(D)) where e((x1,y1), . . . , (xm,ym)) =
∑m

i=1 ϕ(yi)ψ(· ,xi) (2)

for some continuous ρ : Y → R2D, an appropriate G-invariant positive-definite kernel ψ : X 2 → R,
and some continuous and G-equivariant ρ : H′ → C(X ,Θ) with H′ an appropriate G-invariant
space of functions.

Theorem 1 naturally gives rise to architectures which can be deconstructed into two components: an
encoder and a decoder. The encoder, e : S → Z , maps datasets to some embedding space Z . The
decoder, ρ : Z → C(X ,Θ), takes this representation and maps to a function that gives the parameters
of the CNP’s predictive distributions: p(y|x,D) = p(y|ρ(e(D))(x)) where ρ(e(D))(x) ∈ Θ. For
simplicity, we often view the decoder as a function Z × X → Θ and more simply write ρ(e(D),x).
In Theorem 1, both the encoder e and decoder ρ are G-equivariant. Many neural process architectures
are of this form, including the ConvCNP [Gordon et al., 2019], the EquivCNP [Kawano et al., 2021],
the RCNP [Huang et al., 2023], and the TE-TNP [Ashman et al., 2024].2 We discuss the specifics of
each of these architectures in Appendix B.

2We note that the form of the embedded dataset e(D) differs slightly in the RCP and TE-TNP. However, in
both cases the form in Equation 2 can be recovered as special cases. We discuss this more in Appendix B.

3

3 Equivariant Decomposition of Non-Equivariant Functions

In this section, we demonstrate that, subject to regularity conditions, any non-equivariant operator
between function spaces can be constructed as, or approximated by, an equivariant mapping with
additional, fixed functions as input. These results motivate a simple construction for approximately
equivariant models, which we use to construct approximately equivariant NPs in Section 3.1. We first
illustrate the proof technique by proving the result for linear operators (Theorem 2) and then extend
the result to nonlinear operators (Theorem 3).

Setup. Let (H, ⟨ · , · ⟩) be a Hilbert space of functions X → R. Let G be a group acting linearly
on H from the left. For every g ∈ G and f ∈ H, applying g to f gives another function: gf ∈ H.
Additionally, for f1, f2 ∈ H, g(f1 + f2) = gf1 + gf2. Assume that H is separable and that H is
G-invariant, meaning that, for all f1, f2 ∈ H and g ∈ G, ⟨gf1, gf2⟩ = ⟨f1, f2⟩. If H = L2(X) and
X is a separable metric space, then H is also separable [Brezis, 2011, Theorem 4.13]. Let B be
the collection of bounded linear operators on H. We say that an operator T ∈ B is of finite rank if
the dimensionality of the range of T is finite. Let (ei)i≥1 be an orthonormal basis for H. Define
Pn =

∑n
i=1 ei⟨ei, · ⟩. The following proposition is well known:

Proposition 1 (Finite-rank approximation of compact operators; e.g., Corollary 6.2 by Brezis [2011].).
Let T ∈ B. Then T is compact if and only if there exists a sequence of operators of finite rank
(Tn)n≥1 ⊆ B such that ∥T − Tn∥ → 0. In particular, one may take Tn = PnT , so T is a compact
operator if and only if ∥T − PnT∥ → 0.

The following new result shows that every compact T ∈ B can be approximated with a G-equivariant
function with additional fixed inputs: T ≈ En(·, t1, . . . , tn) where En is G-equivariant and
t1, . . . , tn are the additional fixed inputs.
Theorem 2 (Approximation of non-equivariant linear operators.). Let T ∈ B. Assume that T is
compact. Then there exists a sequence of continuous nonlinear operators En : H1+2n → H, n ≥ 1,
and a sequence of functions (tn)n≥1 ⊆ H such that every En is G-equivariant,

En(gf1, . . . , gfn+1) = gEn(f1, . . . , fn+1) for all g ∈ G and f1, . . . , fn ∈ H, (3)

and ∥T − En(· , t1, . . . , t2n)∥ → 0.

Proof. Observe that PnTf =
∑n

i=1 ei⟨T ∗ei, f⟩ =
∑n

i=1 ei⟨ti, f⟩, with ti = T ∗ei ∈ H. Define the
continuous nonlinear operators En : H2n+1 → H as En(f, t1, e1, . . . , tn, en) =

∑n
i=1 ei⟨ti, f⟩. By

G-invariance of H, these operators are G-equivariant:

En(gf, gt1, ge1, . . .) =
∑n

i=1 gei⟨gti, gf⟩ = g
∑n

i=1 ei⟨ti, f⟩ = gEn(f, t1, e1, . . .). (4)

Since T is compact, ∥T − PnT∥ → 0 (Proposition 1), so ∥T − En(· , t1, . . . , tn, e1, . . . , en)∥ → 0,
which proves the result.

In Theorem 2, if G is the group of translations, then En is translation equivariant. Translation-
equivariant mappings between function spaces can be approximated with a CNN [Kumagai and
Sannai, 2020]. Therefore, Theorem 2 gives that T ≈ CNN(· , t1, . . . , tn) where t1, . . . , tn are
additional fixed inputs that are given as additional channels to the CNN and can be treated as
additional model parameters to be optimised. These additional inputs in the CNN break translation
equivariance, because they are not translated whenever the original input is translated. The number n
of such inputs therefore roughly determines to what extent equivariance is broken: the larger n, the
more non-equivariant the approximation becomes. We emphasise that this approximation works for
any CNN architecture, as long as it can approximate any translation-equivariant operator.

Instead of applying Theorem 2 directly to T , decompose T = Tequiv + Tnon-equiv where Tequiv is in
some sense the best “equivariant approximation” of T . Then approximate Tnon-equiv using Theorem 2,
and approximate Tequiv with a CNN directly: T ≈ CNNequiv +CNNnon-equiv(· , t1, . . . , tn). If n = 0,
this approximation roughly recovers CNNequiv, the best equivariant approximation of T ; and, if n
is increased, the equivariance starts to break and the approximation starts to wholly approximate T .
Specifically, in Theorem 2, n determines the dimensionality of the range of En. Therefore, a small
n means that that one would deviate from Tequiv in only a few degrees of freedom. The idea that n
can be used to control whether an optimal equivariant or non-equivariant approximation is desired
inspires the idea in Section 3.1 where, with some probability, we set the additional inputs to zero.

4

We now extend the result to any continuous, possibly nonlinear operator T : H → H. For T ∈ B,
it is true that T is compact if and only if ∥T − PnTPn∥ → 0 (Proposition 2 in Appendix A). In
generalising Theorem 2 to nonlinear operators, we shall use this equivalent condition. Roughly
speaking, ∥T − PnTPn∥ → 0 says that both the domain and range of T admit a finite-dimensional
approximation, and the proof then proceeds by discretising these finite-dimensional approximations.

Theorem 3 (Approximation of non-equivariant operators.). Let T : H → H be a continuous, possibly
nonlinear operator. Assume that ∥T − PnTPn∥ → 0, and that T is (c, α)-Hölder for c, α > 0, in
the following sense:

∥T (u)− T (v)∥ ≤ c∥u− v∥α for all u, v ∈ H. (5)

Moreover, assume that the orthonormal basis (ei)i≥1 is chosen such that, for every n ∈ N and
g ∈ G, span {e1, . . . , en} = span {ge1, . . . , gen}, meaning that subspaces spanned by finitely many
basis elements are invariant under the group action (∗). Let M > 0. Then there exists a sequence
(kn)n≥1 ⊆ N, a sequence of continuous nonlinear operators En : H1+kn → H, n ≥ 1, and a
sequence of functions (tn)n≥1 ⊆ H such that every En is G-equivariant,

En(gf1, . . . , gfkn
) = gEn(f1, . . . , fkn

) for all g ∈ G and f1, . . . , fkn
∈ H, (6)

and
sup

u∈H:∥u∥≤M

∥T (u)− En(u, t1, . . . , tkn
)∥ → 0. (7)

If assumption (∗) does not hold, then the conclusion holds with En(· , t1, . . . , tkn
) replaced by

En(Pn · , t1, . . . , tkn
). We provide a proof in Appendix A.

Condition (∗) says that the orthonormal basis (ei)i≥1 must be chosen in a way such that applying
the group action does not “introduce higher basis elements”. Note that only one such basis needs to
exist for the result to hold. An important example where this condition holds is H = L2(S1) where
S1 = R/Z is the one-dimensional torus ([0, 1] with endpoints identified); G the one-dimensional
translation group; and (ei)i≥1 the Fourier basis: ek(x) = ei2πkx. Then ek(x− τ) = ei2πkτek(x) ∝
ek(x), so span {ek(· − τ)} = span {ek}. This example shows that the result holds for translation
equivariance, which is the symmetry that we will primarily consider in the experiments.

In Theorem 3, the sequence (kn)n≥1 determines how many additional fixed inputs are required to
obtain a good approximation. For linear T (Theorem 2), kn grows linearly in n. In the nonlinear case,
kn may grow faster than linear in n, so more basis functions may be required. We leave it to future
work to more accurately identify how the growth of kn in n depends on T . A promising idea is to
consider ∥Tgf − gTf∥ as a measure of how equivariant a mapping is [Wang et al., 2022a].

3.1 Approximately Equivariant Neural Processes

Theorem 3 provides a general construction of non-equivariant functions from equivariant functions,
lending insight into how approximately equivariant neural processes can be constructed. Consider a
G-equivariant CNP with G-equivariant encoder e and decoder ρ. The construction that we consider
in this paper is to insert additional fixed inputs into the decoder ρ:

p(Y|X,D) =
∏

n p(yn|xn,D) =
∏

n p(yn|xn, ρ(e(D), t1, . . . , tB)) (8)

where the decoder ρ : H1+B → C(X ,Θ) now takes in the dataset embedding e(D) as well as B
additional fixed inputs (tb)

B
b=1 ⊆ H. These become additional model parameters and break G-

equivariance of the decoder. The more are included, the more non-equivariant the decoder becomes.
Crucially, Theorem 3 shows that including sufficiently many additional inputs eventually recovers
any non-equivariant decoder. Conversely, by only including a few of them, the decoder deviates from
G-equivariance in only a few degrees of freedom. Hence, the number B of additional fixed inputs
determines to which extent the decoder can become non-equivariant.

There are a myriad of ways in which (tb)
B
b=1 can be incorporated into existing architectures for ρ. If

ρ is a CNN or a G-equivariant CNN, the additional inputs become additional channels, which can be
either concatenated or added to the dataset embedding. Summing requires no modification to ρ, and
is the approach we take for the approximately equivariant ConvCNP. If ρ is a vision transformer [ViT;
Dosovitskiy et al., 2021], the additional inputs become learnable tokens. For more general ρ, such as
that used in the TE-TNP, we can employ effective alternative choices, as discussed in Appendix B.

5

Theorem 3 also intimately connects to positional embeddings in LLMs. LLMs usually use stacked
transformer layers [Vaswani et al., 2017], which are permutation equivariant. However, after tokenis-
ing a sentence into a collection of word tokens, the underlying transformer which processes these
tokens should not be equivariant with respect to permutations of the words, because the position of a
word in the sentence is important. Additional word-position-specific inputs can break permutation
equivariance, which are exactly the usual positional embeddings.

Recovering equivariance out-of-distribution. We stress that equivariance is crucial for models to
generalise beyond the training distribution—this is the ‘shared’ component that is inherent to the
system we are modelling. Whilst the non-equivariant component is able to learn local symmetry-
breaking features that are revealed with sufficient data, these features do not reveal themselves outside
the training domain. Therefore, to obtain optimal generalisation performance, we desire that the
model ignores the non-equivariant component outside of the training domain and instead reverts
to equivariant predictions. We achieve this in the following way: (i) During training, set tb = 0
entirely with some fixed probability. This allows the model to learn and produce predictions for
the equivariant component of the underlying system wherever the fixed additional inputs are zero.
(ii) Forcefully set the additional fixed inputs to zero outside the training domain: tb(x) = 0 for x
not close to any training data.3 This forces the model to revert to predictions for the equivariant
component of the system outside the training domain, which should substantially improve the model’s
ability to generalise.

4 Related Work

Group equivariance and equivariant neural processes. Group equivariant deep learning architec-
tures are ubiquitous in machine learning, including CNNs [LeCun et al., 1989], group equivariant
CNNs [Cohen and Welling, 2016a], transformers [Vaswani et al., 2017, Lee et al., 2019] and GNNs
[Scarselli et al., 2008]. This is testament to the usefulness of incorporating inductive biases into
models, with a significant body of research demonstrating improved sample complexity and generali-
sation capabilities [Mei et al., 2021, Elesedy and Zaidi, 2021, Bulusu et al., 2021, Zhu et al., 2021].
There exist a number of NP models which realise these benefits. Notably, the ConvCNP [Gordon
et al., 2019], RCNP [Huang et al., 2023], and TE-TNP [Ashman et al., 2024] all build translation
equivariance into NPs through different architecture choices. More general equivariances have been
considered by both the EquivCNP [Kawano et al., 2021] and SteerCNPs [Holderrieth et al., 2021],
both of which consider architectures similar to the ConvCNP.

Approximate group equivariance. Two methods similar to ours are those of Wang et al. [2022a]
and van der Ouderaa et al. [2022], who develop approximately equivariant architectures for group
equivariant and steerable CNNs [Cohen and Welling, 2016a,b]. We demonstrate in Appendix C that
both approaches are specific examples of our more general approach. Finzi et al. [2021] and Kim
et al. [2023] obtain approximate equivariance through a modification to the loss function such that the
equivariant subspace of linear layers is favoured. These methods are less flexible than our approach,
which can be applied to any equivariant architecture. Romero and Lohit [2022] only enforce strict
equivariance for specific elements of the symmetry group considered. Their approach hinges on the
ability to construct and sample from probability distributions over elements of the groups, which both
restricts their applicability and complicates their implementation. An orthogonal approach to imbuing
models with approximate equivariance is through data augmentation. Data augmentation is trivial to
implement; however, previous work [Wang et al., 2022b] has demonstrated that both equivariant and
approximately equivariant models achieve better generalisation bounds than data augmentation.

5 Experiments

In this section, we evaluate the performance of a number of approximately equivariant NPs derived
from existing strictly equivariant NPs in modelling both synthetic and real-world data. We provide
detailed descriptions of the architectures and datasets used in Appendix D. Throughout, we postfix
to the name of each model the group it is equivariant with respect to, with the postfix G̃ denoting
approximate equivariance with respect to group G. We shall also omit reference to the dimension

3For example, the rectangle covering the maximum longitude and latitude of geographical locations seen
during training of an environmental model.

6

Table 1: Average test log-likelihoods (↑) for the synthetic 1-D GP and 2-D smoke experiments. For
the 1-D dataset we used the regular TNP, while for the 2-D experiment we used the PT-TNP. Results
are grouped together by model class. Best in-class result is bolded.

1-D GP 2-D Smoke

Model ID Log-lik. (↑) OOD Log-lik. (↑) Log-lik. (↑)

TNP −0.406± 0.004 −1.3734± 0.002 4.299± 0.008
TNP (T) −0.500± 0.004 −0.430± 0.007 4.181± 0.011

TNP (T̃) −0.406± 0.004 −0.424± 0.007 4.715± 0.010

ConvCNP (T) −0.499± 0.004 −0.442± 0.006 3.637± 0.041

ConvCNP (T̃) −0.430± 0.004 −0.412± 0.006 3.827± 0.011

RelaxedConvCNP (T̃) −0.419± 0.004 −0.405± 0.007 4.006± 0.010

EquivCNP (E) −0.504± 0.004 −0.443± 0.007 4.194± 0.015

EquivCNP (Ẽ) −0.435± 0.004 −0.413± 0.007 4.233± 0.012

when denoting a symmetry group (e.g. T (n) becomes T). In all experiments, we compare the
performance of three TNP-based models [Ashman et al., 2024]: non-equivariant, T , and T̃ ; three
ConvCNP-based models [Gordon et al., 2019]: T , T̃ using the approach described in Section 3.1,
and T̃ using the relaxed CNN approach of Wang et al. [2022a]; and two EquivCNP-based models
[Kawano et al., 2021]: E and Ẽ. For experiments involving a large number of datapoints, we replace
the TNP-based models with pseudo-token TNP-based models [PT-TNP; Ashman et al. 2024].

5.1 Synthetic 1-D Regression With the Gibbs Kernel

We begin with a synthetic 1-D regression task with datasets drawn from a Gaussian process (GP)
with the Gibbs kernel [Gibbs, 1998]. The Gibbs kernel similar to the squared exponential kernel,
except the lengthscale ℓ(x) is a function of position x. The non-stationarity of the kernel implies that
the predictive map is not translation equivariant, hence we expect an improvement of approximately
equivariant NPs with respect to their equivariant counterparts. We construct each dataset by first
sampling a change point, either side of which the GP lengthscale is either small (ℓ(x) = 0.1) or large
(ℓ(x) = 4.0). The range from which the context and target points are sampled is itself randomly
sampled, so that the change point is not always present in the data. We sample Nc ∼ U{1, 64} and
the number of target points is set as Nt = 128. See Appendix D for a complete description.

We evaluate the log-likelihood on both the in-distribution (ID) training domain and on an out-of-
distribution (OOD) setting in which the test domain is far away from the change point. Table 1
presents the results. We observe that the approximate equivariant models are able to: 1) recover the
performance of the non-equivariant TNP within the non-equivariant ID regime; and 2) generalise
as well as the equivariant models when tested OOD. We provide an illustrative comparison of the
predictive distributions for each model in Figure 1. More examples can be found in Appendix D.
When transitioning from the low-lengthscale to the high-lengthscale region, the equivariant predictive
distributions behave as though they are in the low-lengthscale region. This is due to the ambiguity as
to whether the high-lengthscale region has been entered. In contrast, the approximately equivariant
models are able to learn that a change point always exists at x = 0, resolving this ambiguity.

5.2 Smoke Plumes

There are inherent connections between symmetries and dynamical systems, yet it is also true that
real world dynamics rarely exhibit perfect symmetry. Motivated by this, we investigate the utility of
approximate equivariance in the context of modelling symmetrically-imperfect simulations generated
from partial differential equations. We consider a dataset of 128 × 128 2-D smoke simulations,
computing the air flow in a closed box with a smoke source. Besides the closed boundary, we
also introduce a fixed spherical obstacle through which smoke cannot pass, and we sample the
position of the spherical smoke inflow out of three possible locations. These three components
break the symmetry of the system. We consider 25,000 different initial conditions generated through
PhiFlow [Holl et al., 2020]. We use 22,500 for training and the remaining for testing. We randomly

7

(a) TNP. (b) ConvCNP (T). (c) EquivCNP (E). (d) TNP (T).

(e) ConvCNP (T̃). (f) RelaxedConvCNP (T̃). (g) EquivCNP (Ẽ). (h) TNP (T̃).

Figure 1: A comparison between the predictive distributions on a single synthetic 1-D regression
dataset of the TNP-, ConvCNP-, and EquivCNP-based models. For the approximately equivariant
models, we plot both the model’s predictive distribution (blue), as well as the predictive distributions
obtained without using the fixed inputs (red). The dotted black lines indicate the target range.

sample the smoke sphere radius r ∼ U{5, 30} and the buoyancy coefficient B ∼ U[0.1,0.5]. For each
initial condition, we run the simulation for a fixed number of steps and only keep the last state. We sub-
sample a 32×32 patch from each state to construct a dataset. We sample the number of context points
according to Nc ∼ U{10, 250} and set the remaining datapoints as target points. Table 1 compares
the average test log-likelihood of the models. As in the 1-D regression experiment, the approximately
equivariant versions of each model outperform both the non-equivariant and equivariant versions,
demonstrating the effectiveness of our approach in modelling complex symmetry-breaking features.
We provide illustrations of the predictive means for each model in Appendix Figure 6.

5.3 Environmental Data

As remarked in Section 1, aspects of modelling climate systems adhere to symmetries such as
equivariance. However, there are also unknown local effects which may be revealed by sufficient data.
We explore this empirically by considering a real-world dataset derived from ERA5 [Copernicus
Climate Change Service, 2020], consisting of surface air temperatures for the years 2018 and
2019. Measurements are collected at a latitudinal and longitudinal resolution of 0.5◦, and temporal
resolution of an hour. We also have access to the surface elevation at each coordinate, resulting
in a 4-D input (xn ∈ R4). We consider measurements collected from Europe and from central
US.4. We train each model on Europe’s 2018 data, and test on both Europe’s and central US’ 2019
data. Because the CNN-based architectures have insufficient support for 4-D convolutions, we first
consider a 2-D experiment in which the inputs consist of longitudes and latitudes, followed by a 4-D
experiment consisting of all four inputs upon which the transformer-based architectures are evaluated.

2-D Spatial Regression. We sample datasets spanning 16◦ across each axis. Each dataset consists of
a maximum ofN = 1024 datapoints, from which the number of context points are sampled according
to Nc ∼ U{⌊N/100⌋, ⌊N/3⌋}. The remaining datapoints are set as target points. Table 2 presents
the average test log-likelihood on the two regions for each model. We observe that approximately
equivariant models outperform their equivariant counterparts when tested on the same geographical
region as the training data. As the central US data falls outside the geographical region of the
training data, we zero-out the fixed inputs, so that the predictions for the approximately equivariant
models depend solely on their equivariant component. Surprisingly, they also outperform their
equivariant counterparts. This suggests that incorporating approximate equivariance acts to regularise
the equivariant component of the model, improving generalisation in finite-data settings such as this.
In Figure 2, we compare the predictions of the PT-TNP and EquivCNP-based models for a single
test dataset with the ground-truth data and the equivariant predictions made by the same models with
the fixed inputs zeroed out. The predictive means of both models are almost indistinguishable from
ground-truth. We can gain valuable insight into the effectiveness of our approach by comparing a plot

4A longitude / latitude range of [35◦, 60◦] / [10◦, 45◦] and [−120◦, −80◦] / [30◦, 50◦], respectively.

8

Table 2: Average test log-likelihoods (↑) for the 2-D and 4-D environmental regression experiment.
Results are grouped together by model class. Best in-class result is bolded.

2-D Regression 4-D Regression

Model Europe (↑) US (↑) Europe (↑) US (↑)

PT-TNP 1.14± 0.01 < −106 0.94± 0.01 < −1026
PT-TNP (T) 1.06± 0.01 0.55± 0.01 1.14± 0.01 0.73± 0.01

PT-TNP (T̃) 1.22± 0.01 0.55± 0.01 1.21± 0.01 0.76± 0.01

ConvCNP (T) 1.11± 0.01 0.12± 0.02 - -
ConvCNP (T̃) 1.18± 0.01 0.15± 0.02 - -

RelaxedConvCNP (T̃) 1.20± 0.01 0.22± 0.02 - -

EquivCNP (E) 1.27± 0.01 0.64± 0.02 - -
EquivCNP (Ẽ) 1.36± 0.01 0.69± 0.01 - -

(a) Context. (b) Ground-truth. (c) Elevation.

(d) PT-TNP: T . (e) PT-TNP: T̃ . (f) PT-TNP: T̃ − T .

(g) EquivCNP: E. (h) EquivCNP: Ẽ. (i) EquivCNP: Ẽ − E.

Figure 2: A comparison between the predictive distributions of the equivariant (left column) and
approximately equivariant (middle column) components of the PT-TNP (T̃) and EquivCNP (Ẽ)
models on a single (cropped) test dataset from the 2-D environmental data experiment.

of the difference between the approximately equivariant and the equivariant predictions (Figures 2f
and 2i) to that of the elevation map for this region (Figure 2c). As elevation is not provided as an input,
yet is crucial in predicting surface air temperature, the approximately equivariant models can infer
the effect of local topographical features on air temperature through their non-equivariant component.

4-D Spatio-Temporal Regression. In this experiment, we sample datasets across 4 days with
measurements every day and spanning 8◦ across each axis. Each dataset consists of a maximum
of N = 1024 datapoints, from which the number of context points are sampled according to
Nc ∼ U{⌊N/100⌋, ⌊N/3⌋}. The remaining datapoints are set as target points. We provide results
in Table 2. Similar to the 2-D experiment, we observe that the approximately equivariant PT-TNP
outperforms both the equivariant PT-TNP and non-equivariant PT-TNP on both testing regions.

9

6 Conclusion

The contributions of this paper are two-fold. First, we develop novel theoretical results that provide
insights into the general construction of approximately equivariant operators which is agnostic to
the choice of symmetry group and choice of model architecture. Second, we use these insights to
construct approximately equivariant NPs, demonstrating their improved performance relative to non-
equivariant and strictly equivariant counterparts on a number of synthetic and real-world regression
problems. We consider this work to be an important step towards understanding and developing
approximately equivariant models. However, more must be done to rigorously quantify and control
the degree to which these models depart from strict equivariance. Further, we only considered simple
approaches to incorporating approximate equivariance into equivariant architectures, and provided
empirical results for relatively small-scale experiments. We look forward to addressing each of these
limitations in future work.

Acknowledgements

CD is supported by the Cambridge Trust Scholarship. AW acknowledges support from a Turing
AI fellowship under grant EP/V025279/1 and the Leverhulme Trust via CFI. RET is supported by
Google, Amazon, ARM, Improbable and EPSRC grant EP/T005386/1.

10

References
Matthew Ashman, Cristiana Diaconu, Junhyuck Kim, Lakee Sivaraya, Stratis Markou, James Re-

queima, Wessel P Bruinsma, and Richard E Turner. Translation-equivariant transformer neural
processes. In International conference on machine learning. PMLR, 2024.

Haim Brezis. Functional analysis, Sobolev spaces and partial differential equations, volume 2.
Springer, 2011.

Wessel P. Bruinsma. Convolutional Conditional Neural Processes. PhD thesis, Department of
Engineering, University of Cambridge, 2022. URL https://www.repository.cam.ac.uk/
handle/1810/354383.

Srinath Bulusu, Matteo Favoni, Andreas Ipp, David I Müller, and Daniel Schuh. Generalization
capabilities of translationally equivariant neural networks. Physical Review D, 104(7):074504,
2021.

Andrew Carr and David Wingate. Graph neural processes: Towards Bayesian graph neural networks.
arXiv preprint arXiv:1902.10042, 2019.

Taco Cohen and Max Welling. Group equivariant convolutional networks. In International conference
on machine learning, pages 2990–2999. PMLR, 2016a.

Taco S Cohen and Max Welling. Steerable cnns. arXiv preprint arXiv:1612.08498, 2016b.

Copernicus Climate Change Service. Near surface meteorological variables from 1979 to 2019
derived from bias-corrected reanalysis, 2020. URL https://cds.climate.copernicus.eu/
cdsapp#!/home.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit,
and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale.
In International Conference on Learning Representations, 2021. URL https://openreview.
net/forum?id=YicbFdNTTy.

Bryn Elesedy and Sheheryar Zaidi. Provably strict generalisation benefit for equivariant models. In
International conference on machine learning, pages 2959–2969. PMLR, 2021.

Leo Feng, Hossein Hajimirsadeghi, Yoshua Bengio, and Mohamed Osama Ahmed. Latent bottle-
necked attentive neural processes. arXiv preprint arXiv:2211.08458, 2022.

Marc Finzi, Samuel Stanton, Pavel Izmailov, and Andrew Gordon Wilson. Generalizing convolutional
neural networks for equivariance to lie groups on arbitrary continuous data. In International
Conference on Machine Learning, pages 3165–3176. PMLR, 2020.

Marc Finzi, Gregory Benton, and Andrew G Wilson. Residual pathway priors for soft equivariance
constraints. Advances in Neural Information Processing Systems, 34:30037–30049, 2021.

Andrew Foong, Wessel Bruinsma, Jonathan Gordon, Yann Dubois, James Requeima, and Richard
Turner. Meta-learning stationary stochastic process prediction with convolutional neural processes.
Advances in Neural Information Processing Systems, 33:8284–8295, 2020.

Marta Garnelo, Dan Rosenbaum, Christopher Maddison, Tiago Ramalho, David Saxton, Murray
Shanahan, Yee Whye Teh, Danilo Rezende, and SM Ali Eslami. Conditional neural processes. In
International conference on machine learning, pages 1704–1713. PMLR, 2018a.

Marta Garnelo, Jonathan Schwarz, Dan Rosenbaum, Fabio Viola, Danilo J Rezende, SM Eslami, and
Yee Whye Teh. Neural processes. arXiv preprint arXiv:1807.01622, 2018b.

Mark N Gibbs. Bayesian Gaussian processes for regression and classification. PhD thesis, Citeseer,
1998.

Jonathan Gordon, Wessel P Bruinsma, Andrew YK Foong, James Requeima, Yann Dubois, and
Richard E Turner. Convolutional conditional neural processes. arXiv preprint arXiv:1910.13556,
2019.

11

https://www.repository.cam.ac.uk/handle/1810/354383
https://www.repository.cam.ac.uk/handle/1810/354383
https://cds.climate.copernicus.eu/cdsapp#!/home
https://cds.climate.copernicus.eu/cdsapp#!/home
https://openreview.net/forum?id=YicbFdNTTy
https://openreview.net/forum?id=YicbFdNTTy

Peter Holderrieth, Michael J Hutchinson, and Yee Whye Teh. Equivariant learning of stochastic
fields: Gaussian processes and steerable conditional neural processes. In International Conference
on Machine Learning, pages 4297–4307. PMLR, 2021.

Philipp Holl, Nils Thuerey, and Vladlen Koltun. Learning to control pdes with differentiable physics.
In International Conference on Learning Representations, 2020. URL https://openreview.
net/forum?id=HyeSin4FPB.

Daolang Huang, Manuel Haussmann, Ulpu Remes, ST John, Grégoire Clarté, Kevin Sebastian Luck,
Samuel Kaski, and Luigi Acerbi. Practical equivariances via relational conditional neural processes.
arXiv preprint arXiv:2306.10915, 2023.

Andrew Jaegle, Felix Gimeno, Andy Brock, Oriol Vinyals, Andrew Zisserman, and Joao Carreira.
Perceiver: General perception with iterative attention. In International conference on machine
learning, pages 4651–4664. PMLR, 2021.

Makoto Kawano, Wataru Kumagai, Akiyoshi Sannai, Yusuke Iwasawa, and Yutaka Matsuo. Group
equivariant conditional neural processes. arXiv preprint arXiv:2102.08759, 2021.

Hyunjik Kim, Andriy Mnih, Jonathan Schwarz, Marta Garnelo, Ali Eslami, Dan Rosenbaum, Oriol
Vinyals, and Yee Whye Teh. Attentive neural processes. arXiv preprint arXiv:1901.05761, 2019.

Hyunsu Kim, Hyungi Lee, Hongseok Yang, and Juho Lee. Regularizing towards soft equivariance
under mixed symmetries. In International Conference on Machine Learning, pages 16712–16727.
PMLR, 2023.

Wataru Kumagai and Akiyoshi Sannai. Universal approximation theorem for equivariant maps by
group CNNs. arXiv preprint arXiv:2012.13882, 2020.

Yann LeCun, Bernhard Boser, John Denker, Donnie Henderson, Richard Howard, Wayne Hubbard,
and Lawrence Jackel. Handwritten digit recognition with a back-propagation network. Advances
in neural information processing systems, 2, 1989.

Juho Lee, Yoonho Lee, Jungtaek Kim, Adam Kosiorek, Seungjin Choi, and Yee Whye Teh. Set trans-
former: A framework for attention-based permutation-invariant neural networks. In International
conference on machine learning, pages 3744–3753. PMLR, 2019.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

Song Mei, Theodor Misiakiewicz, and Andrea Montanari. Learning with invariances in random
features and kernel models. In Conference on Learning Theory, pages 3351–3418. PMLR, 2021.

Tung Nguyen and Aditya Grover. Transformer neural processes: Uncertainty-aware meta learning
via sequence modeling. arXiv preprint arXiv:2207.04179, 2022.

David W Romero and Suhas Lohit. Learning partial equivariances from data. Advances in Neural
Information Processing Systems, 35:36466–36478, 2022.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedical
image segmentation. In Medical Image Computing and Computer-Assisted Intervention–MICCAI
2015: 18th International Conference, Munich, Germany, October 5-9, 2015, Proceedings, Part III
18, pages 234–241. Springer, 2015.

Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini. The
graph neural network model. IEEE transactions on neural networks, 20(1):61–80, 2008.

Tycho van der Ouderaa, David W Romero, and Mark van der Wilk. Relaxing equivariance constraints
with non-stationary continuous filters. Advances in Neural Information Processing Systems, 35:
33818–33830, 2022.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

12

https://openreview.net/forum?id=HyeSin4FPB
https://openreview.net/forum?id=HyeSin4FPB

Rui Wang, Robin Walters, and Rose Yu. Approximately equivariant networks for imperfectly
symmetric dynamics. In International Conference on Machine Learning, pages 23078–23091.
PMLR, 2022a.

Rui Wang, Robin Walters, and Rose Yu. Data augmentation vs. equivariant networks: A theory of
generalization on dynamics forecasting. arXiv preprint arXiv:2206.09450, 2022b.

Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Russ R Salakhutdinov, and
Alexander J Smola. Deep sets. Advances in neural information processing systems, 30, 2017.

Sicheng Zhu, Bang An, and Furong Huang. Understanding the generalization benefit of model
invariance from a data perspective. Advances in Neural Information Processing Systems, 34:
4328–4341, 2021.

A Proof of Theorem 3

Proposition 2. Let T ∈ B. Then T is compact if and only if ∥T − PnTPn∥ → 0.

Proof. Assume that ∥T − PnTPn∥ → 0. Then T is the limit of a sequence of finite-rank operators,
so T is compact (Proposition 1).

On the other hand, assume that T is compact. Then ∥T −PnT∥ → 0 (Proposition 1). Use the triangle
inequality to bound

∥T − PnTPn∥ = ∥T − PnT + PnT − PnTPn∥ ≤ ∥T − PnT∥+ ∥Pn∥∥T − TPn∥. (9)

We already know that ∥T −PnT∥ → 0, and it is true that ∥Pn∥ = 1. Finally, since T is compact, the
adjoint T ∗ is also compact. Hence, again by Proposition 1,

∥T ∗ − PnT
∗∥ = ∥(T − TPn)

∗∥ = ∥T − TPn∥ → 0, (10)

which proves that ∥T − PnTPn∥ → 0.

Theorem 3 (Approximation of non-equivariant operators.). Let T : H → H be a continuous, possibly
nonlinear operator. Assume that ∥T − PnTPn∥ → 0, and that T is (c, α)-Hölder for c, α > 0, in
the following sense:

∥T (u)− T (v)∥ ≤ c∥u− v∥α for all u, v ∈ H. (5)
Moreover, assume that the orthonormal basis (ei)i≥1 is chosen such that, for every n ∈ N and
g ∈ G, span {e1, . . . , en} = span {ge1, . . . , gen}, meaning that subspaces spanned by finitely many
basis elements are invariant under the group action (∗). Let M > 0. Then there exists a sequence
(kn)n≥1 ⊆ N, a sequence of continuous nonlinear operators En : H1+kn → H, n ≥ 1, and a
sequence of functions (tn)n≥1 ⊆ H such that every En is G-equivariant,

En(gf1, . . . , gfkn) = gEn(f1, . . . , fkn) for all g ∈ G and f1, . . . , fkn ∈ H, (6)

and
sup

u∈H:∥u∥≤M

∥T (u)− En(u, t1, . . . , tkn
)∥ → 0. (7)

If assumption (∗) does not hold, then the conclusion holds with En(· , t1, . . . , tkn
) replaced by

En(Pn · , t1, . . . , tkn
). We provide a proof in Appendix A.

Proof. Let ε > 0. Choose n ∈ N such that ∥T − PnTPn∥ < 1
2ε, and choose h > 0 such that

chα = 1
2ε. Set hn = h/

√
2n. Consider the following collection of vectors:

A = {jhne1 : j = 0,±1, . . . ,±⌈M/hn⌉} × · · · × {jhnen : j = 0,±1, . . . ,±⌈M/hn⌉}. (11)

By construction of A, for every u ∈ H such that ∥u∥ ≤ M , there exists an a ∈ A such that
∥Pnu− a∥2 ≤ nh2n = 1

2h
2 < h2.

Let k̃ : R → [0,∞) be a continuous function with support equal to (−h, h). Set k : H×H → [0,∞),
k(u, v) = k̃(∥u− v∥). Consider the following map:

E : H×H2|A| → H, E(u, a1, t1, . . . , a|A|, t|A|) =

∑|A|
i=1 k(u, ai)ti∑|A|
i=1 k(u, ai)

(12)

13

where 0/0 is defined as 0. This map E is continuous: the numerator is a continuous H-valued
function, and the denominator is continuous R-valued function which is non-zero wherever the
numerator is non-zero. Moreover, by G-invariance of H, k is G-invariant, so E is G-equivariant:

E(gu, ga1, gt1, . . .) =

∑|A|
i=1 k(gu, gai)gti∑|A|
i=1 k(gu, gai)

= g

∑|A|
i=1 k(u, ai)ti∑|A|
i=1 k(u, ai)

= gE(u, a1, t1, . . .). (13)

Now set ti = (PnTPn)(ai). Consider some u ∈ H such that ∥u∥ ≤ M . By construction of A,∑|A|
i=1 k(Pnu, ai) > 0. Therefore, by (c, α)-Hölder continuity of T ,

∥(PnTPn)(u)− E(Pnu, a1, t1, . . .)∥

=

∥∥∥∥∥
∑|A|

i=1 k(Pnu, ai)(PnTPn)(u)∑|A|
i=1 k(Pnu, ai)

−
∑|A|

i=1 k(Pnu, ai)(PnTPn)(ai)∑|A|
i=1 k(Pnu, ai)

∥∥∥∥∥ (14)

=

∥∥∥∥∥
∑|A|

i=1 k(Pnu, ai)((PnTPn)(u)− (PnTPn)(ai))∑|A|
i=1 k(Pnu, ai)

∥∥∥∥∥ (15)

(i)
≤
∑|A|

i=1 k(Pnu, ai)∥(PnTPn)(u)− (PnTPn)(ai)∥∑|A|
i=1 k(Pnu, ai)

(16)

(ii)
≤
∑|A|

i=1 k(Pnu, ai)c∥Pnu− ai∥α∑|A|
i=1 k(Pnu, ai)

(iii)
≤ chα = 1

2ε (17)

where (i) uses the triangle inequality; (ii) (PnTPn)(u) = (PnTPn)(Pnu) and (c, α)-Hölder conti-
nuity of PnTPn; and (iii) that ∥Pnu− ai∥ ≥ h implies that k(Pnu, ai) = 0.

Therefore, for all u ∈ H such that ∥u∥ ≤M ,

∥T (u)− E(Pnu, . . .)∥ ≤ ∥T (u)− (PnTPn)(u)∥+ ∥(PnTPn)(u)− E(Pnu, . . .)∥ ≤ ε. (18)

Finally, if condition (∗) holds, then Pn isG-equivariant, which we show now. Let u ∈ H and consider
g ∈ G. Since span {e1, . . . , en} = span {ge1, . . . , gen} and ge1, . . . , gen forms an orthonormal
basis for span, {e1, . . . , en}, we can also write Pn =

∑
i=1 gei⟨gei, · ⟩, so

Pn(gu) =

n∑
i=1

gei⟨gei, gu⟩ = g

n∑
i=1

ei⟨ei, u⟩ = g(Pnu). (19)

Therefore, in the case that condition (∗) holds, Pn can be absorbed into the definition of En.

From the proof, we find that kn = 2|A| = 2(1 + 2⌈
√
2nM/h⌉)n ≤ 2(2 + 2

√
2nM/h)n and

chα = 1
2ε, which implies that h = (ε/2c)1/α, so kn ≤ 2(2 + 2

√
2nM(ε/2c)−1/α)n. This growth

estimate is faster than exponential. Like the linear case shows (Theorem 2), better estimates may be
obtained with constructions of E that better exploit structure of T .

B Equivariant Neural Processes

In this section, we outline the equivariant NP models we use throughout our experiments, and how
their approximately equivariant counterparts can easily be constructed using the results from Section 3.
In all cases, the asymptotic space and time complexity remains unchanged.

B.1 Convolutional Conditional Neural Process

The ConvCNP [Gordon et al., 2019] is a translation equivariant NP and is constructed in exactly
the form shown in Equation 2, with ψ : X 2 → R an RBF kernel with learnable lengthscale and
ϕ(yi) = [yT

i ;1]
T . The functional embedding is discretised and passed pointwise through an MLP

to some final functional representation ẽ(D) : X̃ → RDz , where X̃ denotes the discretised input
domain. ρ implemented as a CNN through which ẽ(D) is passed through together with another RBF

14

kernel ψp which maps back to a continuous function space. We provide pseudo-code for a forward
pass through the ConvCNP in Algorithm 1

Algorithm 1: Forward pass through the Con-
vCNP (T) for off-the-grid data.
Input: ρ = (CNN, ψp), ψ, and density γ.

Context
Dc = (Xc,Yc) = {(xc,n,yc,n)}Nc

n=1,
and target Xt = {xt,m}Nt

m=1

begin
lower, upper← range (Xt ∪Xc);
{x̃i}Ti=1 ← grid(lower, upper, γ);
hi ←

∑Nc
n=1[1,y

T
c,n]

Tψ(x̃i − xc,n);
h
(1)
i ← h

(1)
i /h

(0)
i ;

hi ← MLP(hi);
{f(x̃i)}Ti=1 ← CNN

(
{x̃i,hi}Ti=1

)
;

θm ←
∑T

i=1 f(x̃i)ψp(xt,m − x̃i);
return p(·|θm);

end

Algorithm 2: Forward pass through the Con-
vCNP (T̃) for off-the-grid data.
Input: ρ = (CNN, ψp), ψ, density γ, and fixed

input t. Context
Dc = (Xc,Yc) = {(xc,n,yc,n)}Nc

n=1,
and target Xt = {xt,m}Nt

m=1

begin
lower, upper← range (Xt ∪Xc);
{x̃i}Ti=1 ← grid(lower, upper, γ);
hi ←

∑Nc
n=1[1,y

T
c,n]

Tψ(x̃i − xc,n);
h
(1)
i ← h

(1)
i /h

(0)
i ;

hi ← MLP(hi) + t(x̃i);
{f(x̃i)}Ti=1 ← CNN

(
{x̃i,hi}Ti=1

)
;

θm ←
∑T

i=1 f(x̃i)ψp(xt,m − x̃i);
return p(·|θm);

end

To achieve approximate translation equivariance, we construct a learnable function t : X̃ → RDz

using an MLP which represents the fixed inputs. We sum these together wirth the resized functional
embedding, resulting in the overall implementation ρ(e(D), t1, . . . , tB) = CNN(ẽ(D) + t). Note
that the number of fixed inputs is B = Dz . We provide pseudo-code for a forward pass through the
approximately translation equivariant ConvCNP in Algorithm 2.

B.2 Equivariant Conditional Neural Process

The EquivCNP [Kawano et al., 2021] is a generalisation of the ConvCNP to more general group
equivariances. As with the ConvCNP, it is constructed in the form shown in Equation 2. We achieveE-
equivariance with ψ : X 2 → R an RBF kernel with learnable lengthscale and ϕ(yi) = [yT

i ; 1]
T . The

functional embedding is discretised and passed pointwise through an MLP to some final functional
representation ẽ(D) : X̃ → RDz , where X̃ denotes the discretised input domain. ρ is implemented
as a group equivariant CNN [Cohen and Welling, 2016a] together with another RBF kernel ψp

which maps back to a continuous function space. The approximately E-equivariant EquivCNP is
constructed in an analogous manner to the approximately translation equivariant ConvCNP.

B.3 Translation Equivariant Transformer Neural Process

The TE-TNP [Ashman et al., 2024] is a translation equivariant NP. However, unlike the ConvCNP,
the function embedding representation differs slightly to that in Equation 2, and is given by

e(D)(·) : X → RDz = cat

(
{

N∑
i=1

αh(z0, ϕ(yi), ·,xi)ϕ(yi)
TWV,h}Hh=1

)
W0 (20)

where

αh(z0, ϕ(yi), ·,xi) =
eµ(z

T
0 WQ,h[WK,h]

Tϕ(yi),·−xi)∑N
j=1 e

µ(zT
0 WQ,h[WK,h]

Tϕ(yj),·−xj)
. (21)

Here, µ is implemented using an MLP. This is a partially evaluated translation equivariant multi-head
cross-attention (TE-MHCA) operation, with attention weights computed according to Equation 21.
We refer to ϕ(yi) as the initial token embedding for yi. ρ is implemented using translation equivariant
multi-head self-attention (TE-MHSA) operations which update the token representations. These are
combined with TE-MHCA operations which map the token representations to a continuous function
space. We provide pseudo-code for a forward pass through the TE-TNP in Algorithm 3.

15

Algorithm 3: Forward pass through the TE-
TNP (T).
Input: ρ = {TE-MHSA(ℓ),TE-MHSA(ℓ)}Lℓ=1,

ϕ. Context
Dc = (Xc,Yc) = {(xc,n,yc,n)}Nc

n=1,
and target Xt = {xt,m}Nt

m=1

begin
zc,n ← ϕ(yc,n);
zt,m ← z0;
for ℓ = 1, . . . , L do

zt,m ←
TE-MHCA(ℓ) (zt,m,Zc,xt,m,Xc);
{zc,n}Nc

n=1 ← TE-MHSA(ℓ) (Zc,Xc);
end
θm ← MLP(zt,m);
return p(·|θm);

end

Algorithm 4: Forward pass through the TE-
TNP (T̃).
Input: ρ = {TE-MHSA(ℓ),TE-MHSA(ℓ)}Lℓ=1,

ϕ, fixed input t. Context
Dc = (Xc,Yc) = {(xc,n,yc,n)}Nc

n=1,
and target Xt = {xt,m}Nt

m=1

begin
zc,n ← ϕ(yc,n) + t(xc,n);
zt,m ← z0;
for ℓ = 1, . . . , L do

zt,m ←
TE-MHCA(ℓ) (zt,m,Zc,xt,m,Xc);
{zc,n}Nc

n=1 ← TE-MHSA(ℓ) (Zc,Xc);
end
θm ← MLP(zt,m);
return p(·|θm);

end

Unlike the ConvCNP and EquivCNP, we do not discretise the input domain of the functional
representation. It is not clear how one would sum together a fixed input and the functional embedding
without requiring infinite summations over the entire input domain. Thus, we take an alternative
approach in which the initial token representations for context set are modified by summing together
with the fixed input value at the corresponding location. This modification still conforms to the form
given in Equation 8, and is simple to implement. We provide pseudo-code for a forward pass through
the approximately translation equivariant TE-TNP in Algorithm 4.

B.4 Pseudo-Token Translation Equivariant Transformer Neural Process

The pseudo-token TE-TNP (PT-TE-TNP) is an alternative to the TE-TNP which avoids the O(N2)
computational cost of regular transformers through the use of pseudo-tokens [Feng et al., 2022,
Ashman et al., 2024, Lee et al., 2019]. The functional embedding representation for the PT-TE-TNP
is given by

e(D)(·) : X → RDz = cat

(
{

M∑
m=1

αh(z0,um, ·,xi)u
T
mWV,h}Hh=1

)
W0 (22)

where

um = cat

(
{

N∑
i=1

αh(um,0, ϕ(yi),vm,xi)ϕ(yi)
TWV,h}Hh=1

)
W0 (23)

and

vm = vm,0 +
1

N

N∑
i=1

xi. (24)

The attention mechanism used in the PT-TE-TNP is the same as in the TE-TNP, and is given in
Equation 21. Intuitively, the initial token embeddings for the dataset D are ‘summarised’ by the
pseudo-tokens {um}Mm=1 and pseudo-token input locations {vm}Mm=1. ρ is implemented using a
series of TE-MHSA and TE-MHCA operations which update the pseudo-tokens and form a mapping
from pseudo-tokens to a continuous function space. We provide pseudo-code for a forward pass
through the PT-TE-TNP in Algorithm 5. Note that this assumes that the perceiver-style approach
is taken [Jaegle et al., 2021], as in the latent bottlenecked attentive NP of Feng et al. [2022]. The
induced set transformer approach of Lee et al. [2019] can also be used.

16

Algorithm 5: Forward pass through the PT-
TE-TNP (T).
Input: ρ =

{TE-MHSA(ℓ),TE-MHCA
(ℓ)
1 ,TE-MHCA

(ℓ)
2 }Lℓ=1,

ϕ, V = {vm,0}Mj=1, U = {uj,0}Mm=1, z0.
Context
Dc = (Xc,Yc) = {(xc,n,yc,n)}Nc

n=1,
and target Xt = {xt,m}Nt

m=1

begin
zc,n ← ϕ(yc,n);
vm ← vm,0 + 1/N

∑Nc
i=1 xc,i;

uj ← uj,0;
zt,m ← z0;
for ℓ = 1, . . . , L do

uj ← TE-MHCA
(ℓ)
1 (uj ,Zc,vj ,Xc);

{uj}Mj=1 ← TE-MHSA(ℓ) (U,V);
zt,m ←
TE-MHCA

(ℓ)
2 (zt,m,U, zt,m,V);

end
θm ← MLP(zt,m);
return p(·|θm);

end

Algorithm 6: Forward pass through the PT-
TE-TNP (T̃).
Input: ρ =

{TE-MHSA(ℓ),TE-MHCA
(ℓ)
1 ,TE-MHCA

(ℓ)
2 }Lℓ=1,

ϕ, V = {vm,0}Mj=1, U = {uj,0}Mm=1, z0.
Context
Dc = (Xc,Yc) = {(xc,n,yc,n)}Nc

n=1,
and target Xt = {xt,m}Nt

m=1

begin
zc,n ← ϕ(yc,n);
vm ← vm,0 + 1/N

∑Nc
i=1 xc,i;

uj ← uj,0 + t(vm);
zt,m ← z0;
for ℓ = 1, . . . , L do

uj ← TE-MHCA
(ℓ)
1 (uj ,Zc,vj ,Xc);

{uj}Mj=1 ← TE-MHSA(ℓ) (U,V);
zt,m ←
TE-MHCA

(ℓ)
2 (zt,m,U, zt,m,V);

end
θm ← MLP(zt,m);
return p(·|θm);

end

We incorporate the fixed inputs by modifying summing together the initial pseudo-token values with
the fixed inputs evaluated at the corresponding pseudo-token input location. We provide pseudo-code
for a forward pass through the approximately translation equivariant PT-TE-TNP in Algorithm 6.

B.5 Relaxed Convolutional Conditional Neural Process

The RelaxedConvCNP is equivalent to the ConvCNP with the RelaxedCNN of Wang et al. [2022a]
used in place of a standard CNN. The RelaxedCNN replaces standard convolutions with relaxed
convolutions, which we discuss in more detail in Appendix C. In short, the relaxed convolution is
defined as

(k ∗̃ f)(u) =
∫
G

L∑
l=1

f(v)wl(v)kl(u
−1v)dµ(v). (25)

This modifies the kernel weights kl(u−1v) with the input-dependent function wl(v), which is our
fixed input. To enable the fixed inputs to be zeroed out, we modify this slightly as

(k ∗̃ f)(u) =
∫
G

L∑
l=1

f(v)(1 + tl(v))kl(u
−1v)dµ(v) (26)

so that when tl(v) = 0 we recover the standardG-equivariant convolution. We make tl(v) a learnable
function parameterised by an MLP, as with the other approaches.

C Unification of Existing Approximately Equivariant Architectures

In this section, we demonstrate that the input-dependent kernel approaches of Wang et al. [2022a]
and van der Ouderaa et al. [2022] are special cases of our approach. Throughout this section, we
consider scalar-valued functions. We define the action of g ∈ G on f : G→ R as

(g · f)(u) = f(g−1u). (27)

We begin with the approach of Wang et al. [2022a], which defines the relaxed group convolution as

(k ∗̃ f)(u) =
∫
G

L∑
l=1

f(v)wl(v)kl(u
−1v)dµ(v) (28)

17

where µ(v) is the left Haar measure on G. Observe that this replaces a single kernel with a set of
kernels {kl}Ll=1, whose contributions are linearly combined with coefficients that vary with v ∈ G.
This can be expressed as

(k ∗̃ f)(u) =
L∑

l=1

∫
G

f(v)wl(v)kl(u
−1v)dµ(v)︸ ︷︷ ︸

El(f,wl)(u)

=

L∑
l=1

El(f, wl) = E(f, w1, . . . , wL)(u) (29)

where wl correspond to the fixed inputs and E is used to denote equivariant operators w.r.t. the group
G. Clearly each El is G-equivariant with respect to its inputs, as applying a transformation g ∈ G to
the inputs gives

El(g · f, g · wl)(u) =

∫
G

f(g−1v)wl(g
−1v)kl(u

−1v)dµ(v)

=

∫
G

f(v)wl(v)kl(u
−1gv)dµ(v)

=

∫
G

f(v)wl(v)kl((g
−1u)−1v)dµ(v)

= g · El(f, wl)(u).

(30)

Since the sum of G-equivariant functions is itself G-equivariant, E(f, w1, . . . , wL)(u) is G-
equivariant with respect to its inputs.

The approach of van der Ouderaa et al. [2022] is more general than that of Wang et al. [2022a], and
relax strict equivariance through convolutions with input-dependent kernels:

(k ∗̃ f)(u) =
∫
G

k(v−1u, v)f(v)dµ(v). (31)

Define a fixed input t(u) = u. We can express the above convolution as a G-equivariant operation on
t and f :

E(f, t)(u) =

∫
G

k(v−1u, t(v))f(v)dµ(v). (32)

To demonstrate G-equivariance, consider applying a transformation g ∈ G to the inputs:

E(g · f, g · t)(u) =
∫
G

k(v−1u, t(g−1v))f(g−1v)dµ(v)

=

∫
G

k(v−1g−1u, t(v))f(v)dµ(v)

=

∫
G

k(v−1(g−1u), t(v))f(v)dµ(v)

= g · E(f, t)(u).

(33)

Thus, this method is also a special case of ours.

D Experiment Details and Additional Results

D.1 Synthetic 1-D Regression

We consider a synthetic 1-D regression task using samples drawn from Gaussian processes (GPs)
with the Gibbs kernel with an observation noise of 0.2. This kernel is a non-stationary generalisation
of the squared exponential kernel, where the lengthscale parameter becomes a function of position
l(x):

k(x, x′; l) =

√√√√(2l(x)l(x′)

l(x)2 + l(x′)2

)
exp

(
− (x− x′)2

l(x)2 + l(x′)2

)

18

We consider a 1-D space with two regions with constant, but different lengthscale - one with l = 0.1,
and one with l = 4.0. The lengthscale changepoint is situated at x = 0. We randomly sample
with a 0.5 probability the orientation (left/right) of the low/high lengthscale region. Formally,
l(x) = (0.1β + 4(1− β))δ[x < 0] + (0.1(1− β) + 4β)δ[x ≥ 0], where β ∼ Bern(0.5). For each
task, we sample the number of context points Nc ∼ U{1, 64} and set the number of target points to
Nt = 128. The context range [xc,min,xc,max] (from which the context points are uniformly sampled)
is an interval of length 4, with its centre randomly sampled according to U[−7,7] for the ID task, and
according to U[13,27] for the OOD task. The target range is [xt,min,xt,max] = [xc,min − 1,xc,max + 1].
This is also applicable during testing, with the test dataset consisting of 80,000 datasets.

We use an embedding / token size of Dz = 128 for the TNP-based models and Dz = 64 for the
ConvCNP-based ones, and a decoder consisting of an MLP with two hidden layers of dimension
Dz . The decoder parameterises the mean and pre-softplus variance of a Gaussian likelihood with
heterogeneous noise. Model specific architectures are as follows: TNP The initial context tokens are
obtained by passing the concatenation [x, y, 1] through an MLP with two hidden layers of dimension
Dz . The initial target tokens are obtained by passing the concatenation [x, 0, 0] through the same
MLP. The final dimension of the input acts as a ‘density’ channel to indicate whether or not an
observation is present. The TNP encoder consists of nine layers of self-attention and cross-attention
blocks, each with H = 8 attention heads with dimensions DV = DQK = 16. In each of the attention
blocks, we apply a residual connection consisting of layer-normalisation to the input tokens followed
by the attention mechanism. Following this, there is another residual connection consisting of a
layer-normalisation followed by a pointwise MLP with two hidden layers of dimension Dz . TNP
(T) For the TNP (T) model we follow Ashman et al. [2024]. The architecture is similar to the TNP
model, with the attention blocks replaced with their translation equivariant counterparts. For the
translation equivariant attention mechanisms, we implement ρℓ : RH × RDx → RH as an MLP with
two hidden layers of dimension Dz . The initial context token embeddings are obtained by passing
the context observations through an MLP with two hidden layers of dimension Dz . The initial target
token embeddings are sampled from a standard normal. Pseudo-code for a forward pass through the
TNP (T) can be found in Appendix B.3.

TNP (T̃) The architecture of the TNP (T̃) is similar to that of the TNP (T), with the exception of
the extra fixed inputs that are added to the context token representation. These are obtained by first
performing a Fourier expansion to the context token locations, and then passing the result through an
MLP with two hidden layers of dimension Dz . We use four Fourier coefficients, zero out the fixed
inputs outside of [-7, 7], and during training we drop them out with a probability of 0.5. Pseudo-code
for a forward pass through the TNP (T̃) can be found in Appendix B.3.

ConvCNP (T) For the ConvCNP model, we use a CNN with 9 layers. We use C = 64 channels, a
kernel size k = 21 with a stride of one. The input domain is discretised with 46 points per unit. The
decoder uses five different learned lengthscales to map the output of the CNN back to a continuous
function. Pseudo-code for a forward pass through the ConvCNP (T) can be found in Appendix B.1.

ConvCNP (T̃) The ConvCNP (T̃) closely follows the ConvCNP (T) model, with the main difference
being in the input to the model. For the approximately equivariant model, we sum up the output of
the resized functional embedding with the representation of the fixed inputs. The latter is obtained
by passing the input locations (that lie on the grid) through and MLP with two hidden layers of
dimension C. We consider C fixed inputs, we zero them out outside of [-7, 7] and during training we
drop them out with a probability of 0.1. Pseudo-code for a forward pass through the ConvCNP (T̃)
can be found in Appendix B.1.

RelaxedConvCNP (T̃) We use an identical architecture to the ConvCNP(T), with regular convo-
lutional operations replaced by relaxed convolutions. We use L = 1 kernels such that the total
parameter count remains similar (see Appendix B.5)

EquivCNP (E) We use an identical architecture to the ConvCNP (T), with symmetric convolutions
in place of regular convolutions. Pseudo-code for a forward pass through the EquivCNP (E) can be
found in Appendix B.2.

EquivCNP (Ẽ) We use an identical architecture to the ConvCNP (T̃), with symmetric convolutions
in place of regular convolutions. Pseudo-code for a forward pass through the EquivCNP (Ẽ) can be
found in Appendix B.2.

19

(a) TNP. (b) ConvCNP (T). (c) EquivCNP (E). (d) TNP (T).

(e) ConvCNP (T̃). (f) RelaxedConvCNP (T̃). (g) EquivCNP (Ẽ). (h) TNP (T̃).

Figure 3: A comparison between the predictive distributions on a single synthetic 1D regression
dataset of the TNP-, ConvCNP-, and EquivCNP-based models with different inductive biases (non-
equivariant, equivariant, or approximately equivariant). Unlike in Figure 1, the context range only
spans the low-lengthscale region. For the approximately equivariant models, we plot both the model
prediction (blue), as well as the predictions obtained without using the fixed inputs, which results in
a strictly equivariant model (red). The approximately equivariant models are the only ones able to
correctly capture the uncertainties around the lengthscale change point (x = 0).

Training Details and Compute For all models, we optimise the model parameters using AdamW
[Loshchilov and Hutter, 2017] with a learning rate of 5× 10−4 and batch size of 16. Gradient value
magnitudes are clipped at 0.5. We train for a maximum of 500 epochs, with each epoch consisting of
16,000 datasets (10,000 iterations per epoch). We evaluate the performance of each model on 80,000
test datasets. We train and evaluate all models on a single 11 GB NVIDIA GeForce RTX 2080 Ti
GPU.

Additional Results In Figure 1 we compared the predictive distributions of the eight considered
models for a test dataset where the context range spanned both the low and high-lengthscale regions.
In Figure 3 and Figure 4 we provide additional examples where the context range only spans one
region (the low-lengthscale one in Figure 3 and high-lengthscale one in Figure 4).

Figure 3 shows that the non-equivariant model (TNP) does not produce well-calibrated uncertainties
far away from the context region. The equivariant models underestimate the uncertainty near the
change point location x = 0, giving rise to overly-confident predictions at the transition between
the low and high-lengthscale regions. For the TNP (T) the uncertainties remain low throughout the
entire high-lengthscale region. In contrast, the approximately equivariant models manage to more
accurately capture the uncertainties beyond the transition point, into the high-lengthscale region. This
indicates that the approximately equivariant models are better suited to cope with non-stationarities
in the data.

When the context region only spans the high-lengthscale region, both the strictly and approximately
equivariant models output predictions that closely follow the ground truth. However, the non-
equivariant model completely fails to generalise, outputting almost symmetric predictions about the
origin (x = 0). We hypothesise this is because of its inability to generalise, resulting from the lack of
suitable inductive biases.

D.2 Smoke Plumes

The smoke plume dataset consists of 128× 128 2-D smoke simulations for different initial conditions
generated through PhiFlow[Holl et al., 2020]. Hot smoke is emitted from a circular region at the
bottom, and the simulations output the resulting air flow in a closed box. We also introduce a fixed
obstacle at the top of the box. To obtain a variety of initial conditions we sample the radius of the
smoke source uniformly according to r ∼ U [5, 30]. Moreover, we randomly choose its position
among three possible x-axis locations: {30, 64, 110} (but we keep the y position fixed at 5). Finally,
we sample the buoyancy coefficient of the medium according to B ∼ U [0.1, 0.5]. The closed box,

20

(a) TNP. (b) ConvCNP (T). (c) EquivCNP (E). (d) TNP (T).

(e) ConvCNP (T̃). (f) RelaxedConvCNP (T̃). (g) EquivCNP (Ẽ). (h) TNP (T̃).

Figure 4: A comparison between the predictive distributions on a single synthetic 1D regression
dataset of the TNP-, ConvCNP-, and EquivCNP-based models with different inductive biases (non-
equivariant, equivariant, or approximately equivariant). The context range only spans the high-
lengthscale region. For the approximately equivariant models, we plot both the model prediction
(blue), as well as the predictions obtained without using the fixed inputs, which results in a strictly
equivariant model (red). Both the strictly and approximately equivariant models output predictions
that closely resemble the ground truth, but the non-equivariant TNP model completely fails to
generalise.

Figure 5: Examples of smoke simulations from the smoke plume dataset for six different combina-
tions of smoke radius r and buoyancy B. For each such combination, we show the resulting state for
all of the three possible x-axis locations. The inputs to our models are randomly sampled 32× 32
patches (indicated in red) from the 128× 128 states.

the fixed spherical obstacle, and the position of the smoke inflow (sampled out of three possible
locations) break the symmetry in this dynamical system.

For each initial condition, we run the simulation for 35 time-steps with a time discretisation of
∆t = 0.5, and only keep the last state as one datapoint. We show in Figure 5 examples of such states.
In total, we generate samples for 25,000 initial condition, and we use 20,000 for training, 2,500 for
validation, and the remaining for test.

The inputs consist of [32, 32] regions sub-sampled from the [128, 128] grid. Each dataset consist of a
maximum of N = 1024 datapoints, from which the number of context points are sampled according
to Nc ∼ U{10, 250}, with the remaining points set as the target points.

21

We use an embedding / token size of Dz = 128 for the PT-TNP-based models and Dz = 16 for
the ConvCNP-based models. The decoder consists of an MLP with two hidden layers of dimension
Dz . The decoder parameterises the mean and pre-softplus variance of a Gaussian likelihood with
heterogeneous noise. Model specific architectures are as follows: PT-TNP For the PT-TNP models
we use the same architecture dimensions as the TNP described in Appendix D.1. We use the IST-style
implementation of the PT-TNP [Ashman et al., 2024], with initial pseudo-token values sampled from
a standard normal distribution. We use 128 pseudo-tokens.

PT-TNP (T) The PT-TNP (T) models adopt the same architecture choices as the TNP (T) described
in Appendix D.1. The initial pseudo-tokens and pseudo-input-locations are sampled from a standard
normal. We use 128 pseudo-tokens. Pseudo-code for a forward pass through the PT-TNP (T) can be
found in Appendix B.4.

PT-TNP (T̃) The architecture of the PT-TNP (T̃) is similar to that of the PT-TNP (T), with the
exception of the extra fixed inputs that are added to the pseudo-token representation. These are
obtained by passing the pseudo-token locations through an MLP with two hidden layers of dimension
Dz . We use Dz fixed inputs and apply dropout to them with a probability of 0.5. Pseudo-code for a
forward pass through the PT-TNP (T̃) can be found in Appendix B.4.

ConvCNP (T) For the ConvCNP model, we use a U-Net [Ronneberger et al., 2015] architecture for
the CNN with 9 layers. We use Cin = 16 input channels and Cout = 16 output channels, with the
number of channels doubling / halving on the way down / up. Between each downwards layer we
apply pooling with size two, and between each upwards layer we linearly up-sample to recover the
size. We use a kernel size of k = 9 with a stride of one. We use the natural discretisation of the
128× 128 grid.

ConvCNP (T̃) We use the same architecture as the ConvCNP (T). The fixed inputs are obtained by
passing the discretised grid locations through an MLP with two hidden layers of dimension Cin. We
use Cin fixed inputs and apply dropout with probability 0.5.

RelaxedConvCNP (T̃) We use an identical architecture to the ConvCNP (T), with regular con-
volutional operations replaced by relaxed convolutions. We use L = 1 kernels such that the total
parameter count remains similar. We obtain the additional fixed inputs by passing the effective
discretised grid at each layer (after applying the same pooling / up-sampling operations as the U-Net)
through an MLP with two hidden layers of dimension Cin.

EquivCNP (E) For the EquivCNP (E) model, we use a steerable E-equivariant CNN architecture
consisting of nine layers, each with C = 16 input / output channels. We use a kernel size of k = 9
and stride of one. We discretise the continuous rotational symmetries to integer multiples of 2π/8.
We use the natural discretisation of the 128× 128 grid.

EquivCNP (Ẽ) We use the same architecture as the EquivCNP (E) with the same fixed input
architecture as the ConvCNP (T̃).

Training Details and Compute For all models, we optimise the model parameters using AdamW
[Loshchilov and Hutter, 2017] with a learning rate of 5×10−4. For the ConvCNP T and T̃ , EquivCNP
T and T̃ , and non-equivariant PT-TNP models we use a batch size of 16, while for the PT-TNP T
and T̃ models we use a batch size of 8. Gradient value magnitudes are clipped at 0.5. We train for a
maximum of 500 epochs, with each epoch consisting of 16,000 datasets for a batch size of 16, and
8,000 datasets for a batch size of 8 (10,000 iterations per epoch). We evaluate the performance of
each model on 80,000 test datasets. We train and evaluate all models on a single 11 GB NVIDIA
GeForce RTX 2080 Ti GPU.

Additional Results We show in Figure 6 a comparison between the predictive means, as well as
the absolute difference between them and the ground-truth (GT), for all the models in Table 1.
For PT-TNP and ConvCNP, the predictions of the equivariant models are more blurry, whereas
the approximately equivariant models better capture the detail surrounding the obstacle or the flow
boundary. For the EquivCNP we did not observe a significant difference between the equivariant and
approximately equivariant model.

22

GT. PT-TNP (∅, T , and T̃). ConvCNP (T and T̃). EquivCNP (E and Ẽ).

Context.

Figure 6: A comparison between the predictive distributions of the equivariant and approximately
equivariant versions of the three classes of models: PT-TNP, ConvCNP, and EquivCNP. From left
to right we show: the ground-truth (GT), the non-equivariant PT-TNP, PT-TNP (T), PT-TNP (T̃),
ConvCNP (T), ConvCNP (T̃), RelaxedConvCNP (T̃), EquivCNP (E), and EquivCNP (Ẽ). The top
row shows the mean of the predictions, while the bottom row shows the absolute difference between
the predicted mean of each model and the ground-truth.

D.3 Environmental Data

The environmental dataset consists of surface air temperatures derived from the fifth generation of the
European Centre for Medium-Range Weather Forecasts (ECMWF) atmospheric reanalyses (ERA5)
[Copernicus Climate Change Service, 2020]. The data has a latitudinal and longitudinal resolution of
0.5◦, and temporal resolution of an hour. We consider data collected in 2018 and 2019 from regions
in Europe (latitude / longitude range of [35◦, 60◦] / [10◦, 45◦]) and in the US (latitude / longitude
range of [−120◦, −80◦] / [30◦, 50◦]). In both the 2-D and 4-D experiment, we train on Europe’s
2018 data and test on both Europe’s and the US’s 2019 data.

For the 2-D experiment, the inputs consist of latitude and longitude values. Individual datasets are
obtained by sub-sampling the larger regions, with each dataset consisting of a [32, 32] grid spanning
16◦ across each axis. For the 4-D experiment, the inputs consist of latitude and longitude values, as
well as time and surface elevation. Each dataset consists of a [4, 16, 16] grid spanning 8◦ across each
axis and 4 days. In both experiments, each dataset consists of a maximum of N = 1024 datapoints,
from which the number of context points are sampled according to Nc ∼ U{⌊ N

100⌋, ⌊
N
3 ⌋}, with the

remaining set as target points.

For all models, we use a decoder consisting of an MLP with two hidden layers of dimension
Dz . The decoder parameterises the mean and pre-softplus variance of a Gaussian likelihood with
heterogeneous noise. Model specific architectures are as follows:

PT-TNP Same as Appendix D.2.

PT-TNP (T) Same as Appendix D.2.

PT-TNP (T̃) Same as Appendix D.2 with 128 pseudo-tokens and fixed inputs zeroed outside 2018
and the latitude / longitude range of [35◦, 60◦] / [10◦, 45◦].

ConvCNP (T) Same as Appendix D.2.

ConvCNP (T̃) Same as Appendix D.2 with fixed inputs zeroed outside 2018 and the latitude /
longitude range of [35◦, 60◦] / [10◦, 45◦].

RelaxedConvCNP (T̃) Same as Appendix D.2 with fixed inputs zeroed outside 2018 and the latitude
/ longitude range of [35◦, 60◦] / [10◦, 45◦].

EquivCNP (E) Same as Appendix D.2.

EquivCNP (Ẽ) Same as Appendix D.2 with fixed inputs zeroed outside 2018 and the latitude /
longitude range of [35◦, 60◦] / [10◦, 45◦].

Training Details and Compute For all models, we optimise the model parameters using AdamW
[Loshchilov and Hutter, 2017] with a learning rate of 5× 10−4 and batch size of 16. Gradient value

23

magnitudes are clipped at 0.5. We train for a maximum of 500 epochs, with each epoch consisting of
16,000 datasets (10,000 iterations per epoch). We evaluate the performance of each model on 16,000
test datasets. We train and evaluate all models on a single 11 GB NVIDIA GeForce RTX 2080 Ti
GPU.

Additional Results To demonstrate the importance of dropping out the fixed inputs during training
with finite probability, we compare the performance of two ConvCNP (T̃) models on the 2-D
experiment in Table 3: one with a dropout probability of 0.0, and the other with 0.5. Due to limited
time, we were only able to train each model for 300 epochs (rather than for 500 epochs, hence the
difference in results for the ConvCNP (T̃) model with dropout probability of p = 0.5 to those shown
in Table 2). Nonetheless, we observe that having a finite dropout probability is important for the
model to be able to generalise OOD (i.e. the US).

Table 3: Average test log-likelihoods (↑) for the 2-D environmental regression experiment. p denotes
the probability of dropping out the fixed inputs during training.

Model Europe (↑) US (↑)

ConvCNP (T̃ , p = 0.0) 1.19± 0.01 −0.51± 0.02

ConvCNP (T̃ , p = 0.5) 1.16± 0.01 0.16± 0.02

24

	Introduction
	Background
	Neural Processes
	Group Equivariance
	Group-Equivariant Conditional Neural Processes

	Equivariant Decomposition of Non-Equivariant Functions
	Approximately Equivariant Neural Processes

	Related Work
	Experiments
	Synthetic 1-D Regression With the Gibbs Kernel
	Smoke Plumes
	Environmental Data

	Conclusion
	Proof of Theorem 3
	Equivariant Neural Processes
	Convolutional Conditional Neural Process
	Equivariant Conditional Neural Process
	Translation Equivariant Transformer Neural Process
	Pseudo-Token Translation Equivariant Transformer Neural Process
	Relaxed Convolutional Conditional Neural Process

	Unification of Existing Approximately Equivariant Architectures
	Experiment Details and Additional Results
	Synthetic 1-D Regression
	Smoke Plumes
	Environmental Data

